Available MSc topics
Must read: brief instructions and rules
For all students who are interested in the graduate theses done so far at CRTA, they can be viewed here . All graduation theses made in the old laboratory were defended before 2021. All works from 2021 and 2022 were made and implemented in CRTA. Students who choose a thesis topic are expected to actively engage and work responsibly on the given topic. All students who choose a graduate thesis on one of the topics offered below will be provided with all the necessary equipment, as well as workstations and a (shared) computer in the laboratory and/or practicals. If the graduate work includes an experimental part, students will be able to work in the associated laboratory where experiments will be performed: Laboratory for Autonomous Systems, Laboratory for Medical Robotics or Laboratory for Computational Intelligence. In addition to working in the laboratories, all students are also available for two practicums, the schedule of which can be seen here . When working in laboratories and practicums, students must adhere to all rules of conduct and the rules for using computer, laboratory and other equipment. After work, workplaces in CRTA must always be left clean and tidy.
In addition to laboratories and laboratory equipment, in the student section of CRTA, students have their 3D printers, various student tools, and equipment that are necessary for a large number of topics that include practical experimental work.
Researcher Luka Rabuzin is responsible for working with students and other tools, and he will provide you with all the necessary guidelines when you start working on your topic.
For any general questions and experiences, you can always reach out to our current students, graduates, or demonstrators.
What is a "Project" and how is it related to the master's thesis?
The project in the 9th semester of studies, which precedes the enrollment of the master's thesis, is a necessary prerequisite for applying for the master's thesis topic, especially if the mentor or comentor is a professor from the CRTA. The project topic is closely related to the master thesis topic and forms a cohesive unit with the thesis. When registering the project in the Studomat, it is necessary to agree with the future mentor or comentor on the scope of the project. The project typically involves solving specific parts of the master's thesis topic (addressing certain aspects of the described topics). The project is submitted to the mentor (and comentor) in digital format.
Writing and submission of the MSc thesis
The master's thesis should be written in accordance with the official guidelines and template for the master's thesis, which can be found here. Before writing the thesis, it is necessary to thoroughly study all the materials and contact mentor or comentor for any questions.
Before starting to write the thesis, it is suggested to discuss the structure of the thesis with the mentor or comentor. Considering the chosen submission deadline for the master's thesis, the complete written thesis should be submitted to the mentor or comentor for review (Word and PDF formats) via email at least 10 days before the official submission deadline. The thesis sent for review must be complete free of spelling or grammar errors (make sure to perform a spell check using correct me).
List of available topics
- Development of an end-effector for physical human-robot interaction and physiotherapy
- Upravljanje robotskom medicinskom bušilicom i eksperimenti bušenja kranijalne kosti (za više informacija javiti se doc. dr. sc. Marku Švaci)
- Istraživanje i razvoj robotski potpomognutog sustava za navigaciju kirurga prilikom operacije koljena (za više informacija javiti se doc. dr. sc. Marku Švaci)
- Upravljanje flotom mobilnih robota u ROS2 okruženju
- Development of an interactive setup for the game of Tic-Tac-Toe
- Autonomno punjenje električnih vozila koristeći robotsku ruku
- Dual-handed assembly of a fuse housing
- Robotic handling of objects in an unstructured state
- Izvršavanje naprednih misija primjenom robota KUKA KMR iiwa i robotskog operativnog sustava (ROS2) – zauzeto
List of topics 2023/2024. - Assoc. Ph.D. Filip Šuligoj
- —(rezervirano)—Ekstrinzična kalibracija robotskog in-hand stereovizijskog sustava pomoću neuronskih mreža
- Estimacija Pozicije Glave Pacijenta u 3D Snimkama Računalne Tomografije s Primjenom u Robotiziranoj Neurokirurgiji
- —(rezervirano)—Kontrola sile pomoću robotskog sustava za interakciju s zakrivljenim površinama
- —(rezervirano)—Integracija metoda strojnog vida i učenja za automatiziranu detekciju, lokalizaciju i verifikaciju mikroprocesorskih pločica
- —(rezervirano)—Robotski sustav za autonomnu navigaciju i manipulaciju objektima
- Automatizacija ekstrinzične kalibracije “Oko-u-Ruci” robotskog sustava
- Razvoj i implementacija sustava za kontrolu i praćenje pakiranja s integracijom mjernih vaga i vizijskog Sustava
If you are interested in an area or topic that is not suggested, feel free to suggest your own topics, ideas and projects to one of the CRTA employees, and then you can discuss your topic proposal with a potential mentor and/or comentor and collaborators on the topic. For any other questions, feel free to email the teacher responsible for a specific topic or visit them during consultation hours.
Detailed description of available topics
Ekstrinzična kalibracija robotskog in-hand stereovizijskog sustava pomoću neuronskih mreža
Ovaj rad istražuje upotrebu neuronskih mreža za ekstrinzičnu kalibraciju robotskog in-hand stereovizijskog sustava, ključnog za preciznu lokalizaciju u prostoru. Ovi sustavi nalaze primjenu u industriji, medicini i znanstvenom istraživanju. Konvencionalne kalibracijske metode često su suboptimalne zbog izazova kao što su šum i optičke nelinearnosti. Rad predlaže neparametarsku kalibraciju temeljenu na neuronskim mrežama, koja povećava robusnost i fleksibilnost sustava, te omogućuje automatizaciju procesa, unapređujući time efikasnost i brzinu kalibracije.
U radu se koristiti postojeći stereo vizijski sustav, s makro objektivima i automatskim algoritmom za preciznu lokalizaciju retroreflektivnih sfera. Stereo vizijski sustav treba uz inkrementalne pomake robotske ruke u zadane pozicije strukturirano pohranjivati 3D pozicije robota i piksel koordinate centara lokalizirane sfere, koji zajedno čine kalibracijski trening set za neuronsku mrežu.
Istraživanje obuhvaća sljedeće korake:
- Programirati robota i komunikaciju sa stereo-vizijskim sustavom za proceduru izrade kalibracijskog seta podataka
- Predložiti veličinu i konfiguraciju seta za potrebe treniranja neuronske mreže (za lokalizaciju se koriste referentne retro-reflektivne sfere)
- Istražiti i implementirati modele neuronskih mreža koje mogu učinkovito povezati koordinate centara sfera u slikama stereo-vizijskog sustava s poznatim 3D robotskim pozicijama.
- Evaluirati utjecaj različitih modela i parametara neuronskih mreža na točnost i robusnost kalibracije
- Validirati točnost ekstrinzične kalibracije pomoću neuronske mreže korištenjem pozicija koje nisu bile dio trening seta i računanjem euklidske greške (poznato i očekivano).
Rad treba sadržavati pregled relevantne literature i detaljno opisati korištene metode i algoritme, kao i evaluaciju dobivenih rezultata u kontekstu primjenjivosti u stvarnim aplikacijama. Također je potrebno navesti korištenu literaturu te eventualno dobivenu pomoć od strane mentora ili suradnika.
For more details on this topic, please contact dr. sc. Filip Šuligoj
Estimacija Pozicije Glave Pacijenta u 3D Snimkama Računalne Tomografije s Primjenom u Robotiziranoj Neurokirurgiji
Rad se fokusira na robusnu estimaciju pozicije glave pacijenta u 3D snimkama računalne tomografije (CT), što je od presudne važnosti u kontekstu rastuće automatizacije i primjene robota u neurokirurgiji. Stereotaktičke operacije na mozgu, koje se sve češće izvode uz pomoć robota, zahtijevaju visoku preciznost u lokalizaciji tumora i drugih patoloških stanja. Estimacija pozicije glave postaje stoga ključni element za uspjeh ovakvih kirurških zahvata. Iako su informacije o položaju glave često dostupne kao metapodaci u DICOM formatu, njihova potvrđena točnost je imperativ zbog kliničkog utjecaja.
Metodologija istraživanja uključuje:
- Razvoj i implementaciju algoritama za preciznu estimaciju pozicije glave temeljenih na geometrijskoj analizi facijalnih karakteristika i antropomorfnih orijentira (npr. nos, oči).
- Primjenu i evaluaciju različitih metoda, uključujući analizu svojstvenih vrijednosti i filtraciju biomedicinskih slika na temelju Hounsfieldovih vrijednosti za tkiva različite gustoće.
- Usporedbu i analizu točnosti i robusnosti različitih pristupa, s posebnim fokusom na njihovu primjenjivost u robotiziranoj neurokirurgiji.
- Validaciju metoda korištenjem neovisnih, realnih (anominiziranih) CT snimaka ljudske glave.
Rad će obuhvatiti sveobuhvatan pregled relevantne literature, detaljni opis korištenih metoda i algoritama, te evaluaciju dobivenih rezultata s obzirom na njihovu kliničku primjenjivost. U radu je potrebno navesti korištenu literaturu te eventualno dobivenu pomoć od strane mentora ili suradnika.
For more details on this topic, please contact dr. sc. Filip Šuligoj
Kontrola sile pomoću robotskog sustava za interakciju s zakrivljenim površinama
Funkcionalnost kontrole sile postaje sve značajnija u modernoj robotici, gdje se od robota očekuje ne samo sposobnost vizualne percepcije okruženja, već i napredna interakcija sa istim. Ovo uključuje sposobnost robota da interpretira i reagira na različite fizičke parametre, kao što su sila i moment, u realnom vremenu. Takva vrsta interakcije omogućuje robotima da se adekvatno prilagode složenim i dinamičnim okruženjima, što je ključno za buduće primjene u industriji, zdravstvu i drugim sektorima.
Za ovu svrhu u radu se predlaže koristiti ROS2 (Robot Operating System 2), koji omogućuje integraciju i kontrolu različite opreme i njihove funkcionalnosti. Kao hardverska komponenta koristi se Franka Panda robot u kombinaciji s Realsense D435 dubinskom kamerom.
Zadaci istraživanja uključuju:
1. Dizajniranje prilagodljivog robotskog alata (dubinska kamera u ruci i sferni krajnji alat) koji se može montirati na postojeću čeljust i zakrivljeni radni komad.
2. Upotreba ROS2 za integraciju funkcionalnosti i kontrolu robota te akviziciju podataka point clouda.
3. Implementacija kontrole sile kako bi se održavao konstantan kontakt sa zakrivljenom površinom.
4. Postavljanje scenarija u kojem robot pomiče alat kako bi pokrio linearni put, planiran na temelju oblaka točaka dobivenog dubinskom kamerom, preko zakrivljene površine održavajući konstantnu silu.
5. Analiza rezultata, posebno točnosti pri održavanju konstantne sile i planirane putanje. Rad će sadržavati detaljan pregled literature koja je relevantna za kontrolu sile i vizualizaciju u robotici. Također će se opisati metode i algoritmi korištene za implementaciju kontrolnih shema i akviziciju oblaka točaka. Evaluacija će se provesti kako bi se utvrdila točnost i robusnost implementirane kontrole sile na zakrivljenim površinama. U radu je potrebno navesti korištenu literaturu te eventualno dobivenu pomoć od strane mentora ili suradnika.
For more details on this topic, please contact dr. sc. Filip Šuligoj
Integracija metoda strojnog vida i učenja za automatiziranu detekciju, lokalizaciju i verifikaciju mikroprocesorskih pločica
U kontekstu brzog razvoja tehnologije i masovne proizvodnje sofisticiranih elektroničkih komponenti, kontrola kvalitete ostaje izazovna i ekonomski zahtjevna. Posebno je strojni vid, koji koristi tehnologiju kamere za prikupljanje informacija, postao presudan alat u industrijskim kontrolnim procesima. U ovom radu integriramo kombinaciju strojnog vida i učenja, konkretno neuronskih mreža, za kontrolu kvalitete kod mikroprocesorskih pločica.
Specifični zadaci istraživanja obuhvaćaju:
- Akvizicija slika navedenih mikroprocesorskih pločica pod različitim uvjetima osvjetljenja i orijentacija, koristeći industrijsku kameru.
- Anotaciju i kreiranje seta podataka za treniranje neuronske mreže.
- Primjena YOLO (You Only Look Once) neuronske mreže i algoritama strojnog vida za detekciju, lokalizaciju i verifikaciju elemenata na različitim mikroprocesorskim pločicama kao što su Arduino UNO, Jetson NX Xavier, Raspberry Pi, STM32 i UP board.
- Analiza i evaluacija performansi modela u različitim uvjetima, fokusirajući se na robusnost modela u kontekstu varijacija u orijentaciji, oštećenjima objekata i uvjetima osvjetljenja.
U radu je potrebno navesti korištenu literaturu te eventualno dobivenu pomoć od strane mentora ili suradnika.
For more details on this topic, please contact dr. sc. Filip Šuligoj
Robotski sustav za autonomnu navigaciju i manipulaciju objektima
In the context of the development of autonomous robotic systems for industrial and logistics applications, this paper focuses on the integration of an autonomous mobile platform with a robotic arm. Specific hardware includes the Waypoint Vector mobile robotic platform, a Frank Emik Panda robotic arm with controller, a UPS power supply system, and a computer. This configuration provides new possibilities for automating various tasks, which require navigation and manipulation of objects.
The specific tasks of the research are as follows:
- Design, assembly and connection of all physical system components, including mobile platform, robotic arm, UPS and computer.
- Configuration of the ROS environment and its integration with all physical system components.
- Demonstration of the mobile platform's ability to move autonomously to multiple physical locations within the Laboratory (in the CRTA area).
- Demonstration of the execution of the palletizing task to be performed by the robotic arm at selected locations.
- Analysis and evaluation of system performance to confirm the robustness and efficiency of the proposed implementation.
In the paper, it is necessary to cite relevant literature and methods, and mention possible help received from mentors or associates.
For more details on this topic, please contact dr. sc. Filip Šuligoj
Automatizacija ekstrinzične kalibracije “Oko-u-Ruci” robotskog sustava
In light of the ubiquitous application of robotic systems in industry and research, this paper focuses on the development and implementation of an automatic system for calibrating the spatial relationship between a robotic arm and an embedded 3D vision system. More specifically, the goal is to calculate the transformation matrix between the robot flange and the 3D camera coordinate system, known as extrinsic calibration in the “eye-in-hand” configuration.
Specific tasks of the thesis include:
- Review and implementation of calibration methods: study and analysis of existing methods for extrinsic calibration, with implementation of the chosen method.
- Design and manufacture of a 3d camera mount: design and manufacture of a mount that will allow the 3d camera to be mounted on the flange of the robotic arm.
- Configuration of the operating and development environment: installation and setup of the necessary software environment, including the operating system and development tools, for effective system communication and control.
- Establishment of communication protocol: development and testing of communication protocol between robot, computer and 3d vision system.
- Creation of the calibration procedure and program: development of a software solution that, in combination with the calibration object, automates the process of 3D camera calibration.
- Evaluation of calibration accuracy: conducting experimental measurements and analysis to determine the accuracy and robustness of the implemented calibration process.
In the paper, it is necessary to cite relevant literature and methods, and mention possible help received from mentors or associates.
For more details on this topic, please contact dr. sc. Filip Šuligoj
Razvoj i implementacija sustava za kontrolu i praćenje pakiranja s integracijom mjernih vaga i vizijskog Sustava
This thesis aims to develop an Autonomous System for Control and Monitoring (ASCP), which efficiently combines scales and vision systems for precise detection and measurement of objects in the framework of "Pick and Pack" operations. The system will use depth (stereo) cameras for visual detection of objects and sensors for mass measurement. The focus will be on the development of programs in C++ for object detection using the YOLO algorithm, and on integration with weighing logic.
Specific Tasks
User Interface Design: Creating an intuitive user interface to interact with the vision system and scales.
Training the YOLO model for detection: Collection and annotation of data for the training of the YOLO model, using stereo cameras to obtain depth information.
Implementation of the YOLO model in C++: Inclusion of the trained YOLO model in a program framework developed in C++ for real-time object detection.
Weighing logic integration: Development of an algorithm that will link the information obtained from the scales with the detected objects, and check whether the object's mass and identity are consistent.
Testing and evaluation: Conducting system testing under different conditions and analyzing the results to verify the accuracy and robustness of the implemented algorithms.
Methodology
The development will be carried out using the C++ programming language and relevant libraries for image and sensor data processing. An annotated data set will be used for training the YOLO model, while real objects and conditions will be used for testing and evaluation.
Literature and Cooperation
It is necessary to cite relevant literature and methods in the paper. Possible help or cooperation received from mentors or collaborators should also be mentioned.
For more details on this topic, please contact dr. sc. Filip Šuligoj
Development of an end-effector for physical human-robot interaction and physiotherapy
Language of the Master's thesis: English
Mentor: Asst. Ph.D. Marko Švaco
Commenter: Asst. Ph.D. Tadej Petrič – homepage
Musculoskeletal disorders (MSDs) are referred to as the pandemic of the modern world. They account for the majority of all recognized diseases in the European Union and cause millions of lost working days each year. MSDs are soft tissue injuries caused by sudden impact, force, vibration, and unbalanced positions. The treatment of MSDs has been summarized in several clinical practice guidelines.
In the scope of this thesis, a detailed state-of-the-art analysis of active projects and research in the field of robotic physiotherapy needs to be done. All types of physiotherapy should be investigated such as physical contact, massage, ultrasound, heat, etc.
In the scope of the thesis, a prototype of a robotic end-effector based on the human hand should be researched, developed, and tested in the Laboratory for medical robotics at CRTA on a robot arm with position and impedance control.
This task details investigation into biomechanics and the anatomy of a human hand (palm, fingers, thumb, fist) used in physiotherapy. The developed end-effector of the collaborative robot is intended to reproduce therapeutic movements and apply forces on a human subject in a laboratory mockup scenario. Important mechanical (stiffness, hardness, elasticity, etc.) and physical properties (induced pressure, temperature, friction, etc.) should be measured with the purpose of developing a highly effective end-effector.
For more details on this topic, please contact doc. dr. sc. Marko Švaco.
Dual-handed assembly of a fuse housing
With the increasing application of dual-arm industrial robots, the possibilities are significantly expanded compared to single-arm robotic workstations. Within the laboratory for artificial intelligence, there is a dual-arm robotic system equipped with 15 degrees of freedom, two 2D industrial cameras, tool changers, grippers, and a worktable with an industrial product - a fuse housing. In order to achieve complete automation and robotization of the fuse housing assembly process, with the existing dual-arm Yaskawa CSDA10F is is necessary:
- to reshape and enhance the machine vision system (hardware and software) to make it robust and functional,
- to reshape and enhance the robotic tools, tool holders, magazines, pallets, fixtures, and delivery paths used for the preparation and positioning of the components in the fuse housing assembly,
- to develop an algorithm for learning the desired arrangement of fuses and relays based on 2D perception and image processing,
- to program the process of autonomous assembly of fuse casings according to the learned schedule from the previous step,
- to create a simple graphical user interface (GUI) for controlling a robotic station,
- to develop and implement an algorithm for quality control (inspection) of the assembled fuse box enclosure.
The thesis must be validate on the equipment in the Laboratory for Artificial Intelligence. For the developed application it is necessary to design and manufacture all the required structural, mechatronic, and other elements/components. The demonstration on the laboratory equipment should be enabled in an automatic mode of operation through a user interface.
For more details on this topic, please contact doc. dr. sc. Marko Švaco and dr.sc. Josip Vidaković.
Robotic handling of objects in an unstructured state
Industrial robots are increasingly being used in unstructured work environment where the goal is to manipulate objects with all six degrees of freedom (three translations and three rotations) unknown. In the Laboratory for Autonomous Systems at CRTA, the problem of extracting parts from a box using a stationary industrial 3D vision system needs to be solved on the existing experimental setup. As a preliminary research step, it is necessary to study previously conducted student works on similar topics. In this thesis, it is necessary:
- to develop the necessary constructon and programming solutions for automatic tool changing on a robot,
- to create a tool for calibrating the vision system and robotic arm
- to select at least nine workpieces of different shapes (rectangular, cylindrical, disc-shaped, flat, etc.) and different dimensions,
- for selected subjects it is necessary to examine, implement and describe all available functions for 3D detection and localization.
The thesis must be validate on the equipment in the Laboratory for Autonomous Systems. For the developed application it is necessary to design and manufacture all the required structural, mechatronic, and other elements/components using the available equipment it the laboratory. The demonstration on the laboratory equipment should be enabled in an automatic mode of operation through an arbitrary user interface.
For more details on this topic, please contact doc. dr. sc. Marko Švaco.
Executing advanced missions using the KUKA KMR iiwa robot and the Robot Operating System (ROS2)
Mobile robot KUKA KMR iiwa has the possibility of programming and implementation using the KUKA Sunrise environment. The Sunrise environment requires robot programming in the JAVA programming language, which may not be practical for robotics engineers compared to Python or C++. Therefore, at the Norwegian University has been developed an interface that enables control of the mobile robot and reading its sensors using the ROS2 environment. In addition to easier programming in the ROS2 environment, one of the features of ROS2 is that it allows the application of other mapping, localization, and navigation algorithms, not just those provided by KUKA. The KUKA KMR mobile robot also includes the KUKA iiwa industrial collaborative robot, which can also be implemented in the ROS2 environment along with the MoveIt package, offering exceptional flexibility in working with the robot. In this thesis, it is necessary:
- to investigate and implement communication from ROS2 to the KUKA KMR robot (hardware interface)
- to investigate and implement communication from ROS2 to the KUKA iiwa robot using the MoveIt package
- to select the most appropriate algorithms for simultaneous localization and mapping and implement them on the robot
- to select the most suitable algorithm for autonomous navigation of the robot in space
- to define and execute the task of object retrieval, object manipulation, and object placement at a predefined location.
For more details on this topic, please contact doc. dr. sc. Marko Švaco and Ph.D Branimir Ćaran.
Development of an interactive setup for the game of Tic-Tac-Toe
Ambient and motor intelligence enable people to navigate and adapt to many new situations. One of the areas in which the perception of the environment and human intelligence come to the fore are various games. One of the relatively simple games is the Tic-Tac-Toe game. To enable a robotic system to play the game of Tic-Tac-Toe against a human opponent, it requires the integration of various sensory and motor capabilities into the robotic system. Perception of the game board is a challenging task as robust perception is influenced by several variable parameters such as lighting direction and intensity, color, thickness, and dimensions of the "X" and "O" markers on the game board. Furthermore, motion planning for the robotic arm is not a trivial task as it requires avoiding collisions with the environment and planning movements that avoid singularities, large decelerations, and velocities of individual robot joints or the tool tip. On the existing Tic-Tac-Toe setup in the Laboratory for Autonomous Systems, it is necessary:
- to analyze the robot's workspace with the aim of increasing the effective playing area,
- to analyze and propose a new arrangement of the vision system (one or more cameras) for robust perception of the playing area on the game board,
- to develop and implement a computer vision algorithm for recognizing the planar position of the game board and the game symbols "X" and "O",
- to create a graphical user interface for interacting with the player and running the entire application,
- to analyze and verify each robotic motion before execution, using simulation software packages such as RoboDK,
- to make the necessary structural, control, and other modifications to the experimental setup,
- to create a procedure for automated calibration of vision systems and robots.
Master's thesis must be done on the existing setup with the UR5 robot in the Laboratory for Autonomous Systems in CRTA.
For more details on this topic, please contact doc. dr. sc. Marko Švaco and dr.sc. Filip Šuligoj.
Grading criteria for graduate theses
The graduate theses must be written according to the official guidelines of the FMENA. The grade of the mentor and comentor is formed by adherence to formal regulations and directions, but more importantly by work on the undergraduate thesis, independence, and originality. In addition to the individual grade of the graduate thesis, a grade is also awarded during the presentation in front of the committee.
We invite all students to read them all rules and instructions related to the preparation of diploma theses. For instructions on creating a thesis presentation, contact your mentor directly.
The project was co-financed by the European Union from the European Regional Development Fund
The website was co-financed by the European Union from the European Regional Development Fund.
The content of the website is the sole responsibility of the Faculty of Mechanical Engineering and Naval Architecture.